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ABSTRACT 

The sample mean is not a robust estimator of location and thus can produce misleading information when the data 

are not normally distributed. In this paper we studied three different robust estimators of location and compared their 

performance in providing better Mahalanobis depth with that of median (another robust measure) and mean. Comparing 

the performance of the five different estimators of location we have that M-estimator is more efficient than the other four 

methods in providing better depth for the significant test of equal population mean vectors when the data is free from 

outlier. In the presence of outlier median and trimmed mean seems to be better than the others. The whole five measures 

produced inconsistent result when the data are normally distributed. 
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INTRODUCTION 

Measures that characterize a distribution, such as measures of location and scale, are said to be robust if any little 

change in a distribution have relative little effect on their values. The population mean (�) and standard deviation (�) as 

well as the sample mean (��) and sample standard deviation (��) are not robust. Robustness is particularly important when 

there is a possibility that our data set contains “contaminated” or “corrupt” data. If we take the mean as an estimator for 

instance, outlying points carry more “weight” than points near the mean. Deleting the outlying point would have a greater 

impact on the location of the mean than deleting a point in the dense region. A single point is enough to greatly influence 

the mean of a data set. In the contrary, 50% of a data set must be moved to infinity in order to force the median to do the 

same. This suggests a robust estimator of location. High breakdown point of the median is a reason for choosing it over the 

mean as an estimator of location especially when the data is contaminated.  

The finite breakdown point of a statistic, which is a technical device for judging an estimator is the smallest 

proportion of observations that, when altered sufficiently, can render the statistic meaningless. More precisely the finite 

sample breakdown point of an estimator refers to the smallest proportion of observations which when altered can cause the 

value of the statistic to be arbitrary large or small. The breakdown point of the mean is 
�� in all dimensions, which is one of 

the smallest among other estimators of location. Apart from mean and median, we have other estimator of location like 

trimmed mean which is based on the predetermined amount of trimming required in a data set. Also we have minimum 

covariance estimator of the mean and M-estimator of location. M-estimator approach, unlike trimmed mean, determines 

empirically the amount of trimming that is required of a data set. 

A quantity such as the population mean which characterizes a distribution is said to be a measure of location if it 

satisfies the following four conditions, and a fifth is sometimes added. To describe these conditions, let X be a random 
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variable with distribution F, and let 	(�) be some descriptive measure of F. Then 	(�) is said to be a measure of location 

if for any constant a or b 

1. 	(� + 
) = 	(�) + 
 

2. 	(−�) = −	(�) 

3. � ≥ 0 ������� 	(�) ≥ 0                                                                                                                                           1 

4. 	(��) = �	(�) 

5. Let ��(�) = �(� ≤ �) and ��(�) = �( ≤ �) be the distribution corresponding to the random variable X and Y. 

Then X is said to be stochastically larger than Y if for any �, ��(�) ≤ ��(�) with strict inequality for some �. If 
all the quantiles of X are greater that the corresponding quantiles of Y, then X is stochastically larger than Y. 

Bickel and Lehmann argue (1975) that if X is stochastically larger than Y, then it should be the case that 	(�) ≥	( ) if 	 is to be qualified as a measure of location. The population mean has this property. 

Each estimator of location works well under certain condition of data. For example, if sampling is from a light-

tailed distribution or even a normal distribution, it might be desirable to trim very few observations or none at all. If a 

distribution is skewed to the right, a natural reaction is to trim more observation from the right versus the left tail of the 

empirical distribution. When the distribution is normal, mean as a location may not produce misleading result. Then if the 

distribution is skewed M-estimator of location may produce a better result than the mean. In this paper we wish to test the 

efficiency of different estimators of location in testing for the significance difference between the mean vectors of different 

populations through Mahalanobis depth which provides the ranks we used in Kruslal-Wallis non-parametric test statistic 

for such analyses. We will as well, if possible, state the estimator that is better used for different data distributions.  

LOCATION ESTIMATORS  

In this section we are going to study different robust estimator of location and their properties. Among the 

measures of location we have mean, median, mode, trimmed mean, geometric mean, MCD location estimator, M-estimator 

of location etc. Robust estimators include trimmed mean, MCD location estimator, and M-estimator of location. In this 

section we decided to study the following estimators:  

The Sample Trimmed Mean 

The standard error of the sample mean can be relatively larger when sampling from a heavy-tailed distribution. 

Sample mean estimator is a non-robust measure of location, �. A more robust estimator, the sample trimmed mean has 

come as remedy to the problems of sample mean. The sample trimmed mean, which estimates �, is computed as follows. 

Let ��, ��, … , �� be a random sample and let �(�), �(�), … , �(�) be the observations arranged in ascending order of 

magnitude. The ith largest value, �($), is called the ith order statistics. Supposed the desired amount of trimming has been 

chosen to be %, 0 ≤ % ≤ 0.5. Let ' = (%(), where (%() is the value of %( rounded down to the nearest integer. For 

example, (10.9)=10. The sample trimmed mean is computed by removing the k largest and k smallest observations and 

averaging the values that remains. In symbols, the sample trimmed mean is  

 ��)* = �(+,-).⋯.�01+�2�3                                                                                                                                                  (2) 
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(Wilcox 2004) 

The empirical distribution is trimmed in a manner consistent with how the probability density function was 

trimmed when defining �. for the trimmed mean to have any practical importance, a value for % must be chosen and this 

depends on the number of contamination that is the data. For various reasons, a good choice for general use is % = 0.2. If % 

is too small, the standard error of the trimmed mean, 5678(��)*) , can be drastically inflated by outliers or sampling from 

a heavy-tailed distribution. If % is too large, the standard error can be relatively large compared to the standard error of the 

sample mean when sampling from a normal distribution. An empirical investigation based on data from actual studies 

suggests that the optimal amount of trimming, in terms of minimizing the standard error, is usually between 0 and 0.25 

(see, e.g., Hill and Dixon, 1982). In this we are going to consider 0.01 and 0.02 amount of trimming. 

Minimum Covariance Determinant (MCD) Estimator 

Hubert and Van Driessen (2004) used the re-weighted MCD estimator of multivariate location and scale because 

of its good statistical properties and FAST MCD algorithm which provides an efficient algorithm of computing estimates 

for large data set. For the X sample the MCD estimator is defined as the mean �̂�,: and the covariance matrix Sx,0 of hx 

observations out of nx observations whose covariance matrix has the lowest determinant. The quantity should be larger 

than [(nx-p+1) =2] and nx-hx should be smaller than the number of outliers in the X population. With this choice the MCD 

attain its maximum breakdown value [(nx-p+1) =2] = 50%.The breakdown value of an estimator is defined as the largest 

percentage of contamination it can withstand. If one suspects less than 25% contamination in the X sample, it is advised to 

use hx ≈ 0.75nx as this yields higher finite sample efficiency. Based on the initial estimates �̂�,: and Sx,0, one computes for 

each observation xi, its (preliminary) robust distance. 

0 1
,0 ,0 ,0( ) ( )i X x i XRD x S xµ µ−= − −

 i=1, 2,…, nx 3                                                                                                                                                  (3) 

Then assign weight 1 to xi if 
0RD ≤

2
,0.975pχ

 and weight 0 otherwise. The re-weighed MCD estimator is then 

obtained as the mean �̂� MCD and the covariance matrix Ʃ;� MCD of those observations with weight 1. This re-weighing 

step increases the finite sample efficiency of the MCD estimator considerably, whereas the breakdown value remains the 

same. This can be used to flag off outlier and so can be used to detect outliers. 

Through extensive simulation studies we observed that hx observations out of nx observations whose covariance 

matrix has the lowest determinant were those observations with smaller Mahalanobis distance. The first thing we did here 

was to calculate the Mahalanobis distance of each data point. With the assistance of this distance we were able to get 

dataset whose estimators attain their maximum breakdown value in a few numbers of iterations. For more details (see 

Okonkwo, Okeke, and Nwabueze 2014). 

M-Estimator for Location 

The trimmed mean is based on a predetermined amount of trimming. That is, you first specify the amount of 

trimming that is desired, after which the sample trimmed mean, ��)*, can be computed. Another approach is to determine 

empirically the amount of trimming. For example, if sampling is from a light-tailed distribution, or even a normal 

distribution, or even a normal distribution, it might be desirable to trim very few observations or none at all. If the 
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distribution is skewed to the right, a natural reaction is to trim more observation from the right of the empirical distribution. 

In essence this is what M-estimator does. When searching for a measure of location, one strategy is to use some value, say, 

c, that is in some sense close, on average, to all the possible values of the variable X. One way of quantifying how close a 

value c is from all possible of X is in terms of its expected squared distance. In symbols, 

<(� − =)�                                                                                                                                                                 (4) 

Represents the expected squared distance from c. If c is intended to characterize the typical subject or thing under 

study, a natural approach is to use the value c that minimizes<(� − =)�. Taking <(� − =)� as a function of c, the value of 

c minimizing this function is obtained by differentiating, setting the result equal to 0, and solving for c. That is, c is given 

by the equation 

 <(� − =) = 0  

so= = �. In other words, � is the closest point to all possible values of X in terms of expected squared distance? 

But � is not robust and <(� − =)� gives an inordinate amount of weight to values of X that are far from c. In other words, 

the function (� − =)� increases rapidly as � moves away from c. This approach described for deriving a measure of 

location can be improved by considering a class of function for measuring the distance from a point and then searching for 

a function within this class that has desirable properties. To this end, let 

 >(� − �*)                                                                                                                                                                (5) 

Be some function that measures the distance from �* and let ? be its derivatives with respect to �*. Attention is 

restricted to those functions for which<(>(� − �*)), viewed as a function of �*, has a derivative. Taking the derivatives 

of (5) to be  

 <@?(� − �*)A = 0                                                                                                                                                  (6) 

 where the function ? is assumed to be odd, meaning that ?(−�) = −?(�) for any �  

An M-estimator of location is the value �* such that 

 > TU2VWXY Z = (� − �̂*)�                                                                                                                                             (7) 

yielding �̂* = �� , which is optimal under normality. The problem with this function is that it can cause practical 

problem when sampling from non-normal distributions for which extreme values can occur. But because this choice of > is 

optimal under normality, a natural strategy is to search for some approximation of (7) that gives nearly the same results 

when sampling from a normal distribution. In particular, consider functions that are identical to (7) provided �$ is not too 

extreme. For simplicity, consider a standard normal distribution, and take [ to be �, the standard deviation which in this 

case is 1. Then the optimal choice of �� (� − �̂*)�. Suppose instead that > is taken to be 

>(� − �̂*) = \ −2](� − �̂*) �^ � < −](� − �̂*)� �^ − ] ≤ � ≤ ]2](� − �̂*), �^ � > ] a                                                                                                         (8) 

Where K (some constant to be determined) is a tuning constant that determines the degree of robustness. Thus 

when sampling from a normal distribution, the optimal choice for > is being used provided an observation is not extreme, 

meaning that its value does not exceed K or is not less than –K. If it is extreme, > becomes a linear function, rather than a 
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quadratic function, and this linear function increases less rapidly than (7) , so extreme values are having less of influence 

on �̂*. Now �̂* is the value minimizing∑ > TU2VWXY Z. Taking the derivatives of this equation, with > given by (8), and 

setting result equal to zero, �̂* is determined by  

 2 ∑ ?(� − �*) = 0                                                                                                                                                  (9) 

Where  

 ?(�) = max @−], min(], �)A  
 is Huber’s ?. There remains how to get K. A common strategy is to choose the constant K so that when 

estimating �̂*, the estimator has reasonably high efficiency when sampling from a normal distribution, but continues to 

have efficiency when sampling from a heavy-tailed distribution instead. A common choice is ] = 1.28, the 0.9 quantile of 

the standard normal distribution. Other choice might be more optimal, but ] = 1.28 guards against relatively larger 

standard errors while sacrificing very little when sampling from a normal distribution. A more efficacious choice might be 

made based on knowledge about the distribution being sampled. 

The computation of M-estimator of location, �̂* is done iteratively, but one step M-estimator is obtained using the 

formula 

 �̂* = �.�f(ghij)($k2$-).∑ U(l)01lklml,-�2$-2$k                                                                                                                            (10) 

Where MADN = rstu.vw ≈ rst:.yz{| and }7~ = }<~�|�� − }|, … , |�� − }|� with M being the usual sample median. 

�� is the number of observation�$ for which T Ul2gghijZ < −1.28 and �� the number of observations for which T Ul2gghijZ > 1.28 

. 

Iterative Method of Finding M-Estimator of Location , �W�. 

Set ' = 0, �̂3 = }, the sample median, and choose a value for K. A common choice is ] = 1.28 

Step 1: Set 7 = ∑ ? TUl2V+ghijZ and calculate it using ?(�) = ��(1 − ��)�, �^ |�| < 10, �^ |�| ≥ 1 a 
Step 2: Set � = ∑ ?′ TUl2V+ghijZ and calculate it using the derivative of ? which is ?(�) = �1, �^ − ] ≤ � ≤ ]0, ��ℎ������ a 
B is just the number of observations �$ satisfying−] ≤ TUl2V+ghijZ ≤ ].  

Step 3: set �̂3.� = �̂3 + ghij×h�  and solve. 

Step 4: If |�̂3.� − �̂3| < 0.0001, stop and set �̂* = �̂3.�. Otherwise, increase k by one and repeat steps 1 through 

4. (Wilcox 2004) 

METHODOLOGY 

The two main methods of analyses we considered in this study includes; 

 



28                                                                                                                                        Okeke, Evelyn Nkiruka & Okeke, Joseph Uchenna 

 
NAAS Rating: 2.97– Articles can be sent to editor.bestjournals@gmail.com 

Mahalanobis Depths  

Mahalanobis depth (MD) is obtained from little adjustment of Mahalanobis distance. Recall the mahalanobis 

distance 2 1( ) ' ( )i id y y S y y
− −

−= − − , if xm is the vector that measures the location of X in a continuous and affine 

equivariant way and ��the matrix that measures the scatter of the distribution such that �Uh.� = 7�U7′ holds for any 

matrix A of full rank and any c. Then based on these parameters a simple depth fuction called the Mahalanobis depth is 

constructed as  

 }i(�) = �1 + ‖� − m�‖��� �2�                                                                                                                             (11) 

 }i(�) Takes its unique maximum at the center xm . Mahalanobis depth is continuous on � and in the distribution 

of X. In particular, with m� = E(X) and �� = Ʃ� the moment Mahalanobis distance is given as 

 }*i(�) = @1 + (� − <(�))′Σ �2�(� − <(�))A2�  

The sample version is  

 }~(��, … , ��;  ��) = @1 + (� − �̅)′��2�(� − �̅)A2�                                                                                               (12) 

 Where �̅ is the mean vector and ��2� is the empirical covariance matrix 

Kruskal –Wallis Test 

Kruskal-Wallis (1952) test is a useful tool for testing the equality of k independent populations. Suppose we have 

k samples of sizes (�, (�, … , (3 , with the total size of all samples 
1

k

i
i

n n
=

=∑ . Suppose further that the data from all the 

samples taken are ranked and that the sums of the ranks for the k samples are 8�, 8�, … , 83, respectively. If we define the 

Kruskal-Wallis H test as  

2

1

12
3( 1)

( 1)

k
i

i i

R
H n

n n n=
= − +

+ ∑
                                                                                                                       (13)

 

then it can be shown that the sampling distribution of H is very nearly a chi-square distribution with k-1 degrees 

of freedom, provided that (�, (�, … , (3 are all at least 5.  

The H test provides a non-parametric method in the analysis of variance for one-way classification, or one-factor 

experiments, and generalization can be made. 

DISCUSSIONS 

MD, just like Mahalanobis distance reveals a lot of information about the distribution of dataset. It has long been 

in use in various statistical procedures due to its intuitive appeal and mathematical tractability (despite the restriction to 

elliptical contours that it imposes) (see Serfling 2004). In this our paper we studied the effect of different robust location 

estimators on the Mahalanobis depth. The Mahalanobis depth provided us with the ranks we used in testing the null 

hypothesis of equal population mean vectors by its application to Kruskal-Wallis non-parametric test statistic. MD in this 

case allowed us to convert p-dimensional (where� ≥ 2) dataset to one-dimensional dataset where a univariate test statistics 
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can be applied. In this study four different simulated datasets that follow hypergeometric distribution were generated using 

different specifications for analyses. For each data set we ensured that there exists difference within the groups in the set. 

Out of the four datasets, one is highly affected by outliers. Also two real life data that follow normal distribution were also 

studied to see how the method works when the data is normal, of course we know that Kruskal-wallis test is not supposed 

to be used when the data is normally distributed. The first normally distributed dataset is available at http:www.real-

statistics.com/multivariate-statistics/hotellings-t-squ… and is on tropical disease characterized by fever, low blood pressure 

and body ache. A pharmaceutical company who is working on a new drug to treat this type of disease wanted to determine 

whether the drug is effective. They took a random sample of 20 people treated with the new drug and 18 with a placebo 

and wanted to determine whether the drug is effective at reducing these three symptoms. The result using Hotel lings T2 

test showed that the test in not significant. The second normally distributed dataset is obtained from Methods of 

Multivariate Analysis, second edition by Rencher (2002) or http://www.amazon.com/methods-multivariate-

Analysis...Rencher/dp/0470178965 and the data contains 2 types of coating for resistance to corrosion on 15 pieces of pipe. 

Two pipes, one with each type of coating were buried together and left for the same length of time at 15 different locations, 

providing a natural pairing of the observations. Corrosion for each type of coating was measured on � = 2 variable 

(maximum depth of pit in thousandths of an inch, and number of pits.) The Hotellings T2 result has it that the two coatings 

differ in their effect on corrosion.  

During the analysis the Mahalanobis depth of each dataset were computed with different robust estimators of 

location. The computed depths are then used as ranks in Kruskal-Wallis test statistic and results were obtained.  

RESULTS 

The result of the analyses in Table 1 showed the p-value of each location estimator at different data distribution. 

The performance of the estimators is assessed by their P-value. Estimator with very low value indicates that the test is 

highly significant and thus there exist difference in the populations mean vectors. 

Table 1: Performance of Six Different Estimators of Location and their P-Values 

 Data Distribution 
Location 
Estimator 

Hypergeometic 
Without Outlier 

Hypergeometic 
Without Outlier 

Hypergeometic 
Without Outlier 

Hypergeometic 
with Outlier  

Normal Normal 

Mean 0.033 0.023 0.082 0.102 0.520 0.501 
Median 0.248 0.041 0.049 0.047 0.694 0.273 
Trimmed 
mean (0.1 
trimming) 

0.419 0.028 0.049 0.070 0.520 0.483 

Trimmed 
mean (0.2 
trimming) 

0.419 0.034 0.049 0.031 0.548 0.501 

MCD 0.326 0.028 0.041 1.000 0.330 0.397 
M-
Estimator 

0.050 0.023 0.034 0.122 0.633 0.682 

 

CONCLUSIONS 

Comparing the performance of the six different estimators of location we have that M-estimator is more efficient 

than the other five methods in providing better depth for the significant test of equal population mean vectors when the 

data is free from outlier. In the presence of outlier median and trimmed mean seems to be better than others. The whole six 
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estimators produced inconsistent result when the data are normally distributed of course we know that our method could 

not work well with normally distributed data. 

REFERENCES 

1. Bickel, P.J and Lehmann, E.L (1975).Descriptive statistics for nonparametric models II. Location. Annals of 

Statistics 3, 1045-1069. 

2. Kruskal, W.H. and Wallis, W.A. (1952).Use of rank in one criterion variance analysis, Journal of the American 

Statistical Association, 47, 583-621. 

3. Hill, M. and Dixon, W.J. (1982). Robustness in real life: A study of clinical laboratory data. Biometrics 38, 377-

396. 

4. Hubert, M. and Van Driessen, K. (2004). Fast and robust discriminant analysis. Comput. Statist. Data Anal., 

45(2):301-320. 

5. Okonkwo, E.N., Okeke, J.U., and Nwabueze, J.C.(2014), A comparative Study of Nonparametric and Robust 

Linear Discriminant Procedures, International Journal of Statistics and Systems, Research Indian Publication, 

ISSN 0973-2675, 9(1): 61-74. www.ijss.org.  

6. Serfling, R. (2004). Nonparametric multivariate descriptive measures based on spatial quantiles. Journal of 

Statistical Planning and Inference 123:259-278  

7. Rencher, A.C. (2002). Method of multivariate analysis, 2nd Ed., John Wiley and Sons, Canada, 280-281. 

8. Wilcox, R. R (2004). Introduction to robust estimation and hypothesis testing, Academic Press, New York, 20-22, 

46-51 

  

 

 

 

 


