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ABSTRACT

The sample mean is not a robust estimator of looand thus can produce misleading information wherdata
are not normally distributed. In this paper we stddthree different robust estimators of locatiord a&ompared their
performance in providing better Mahalanobis depith what of median (another robust measure) andnm&amparing
the performance of the five different estimatordazfation we have that M-estimator is more effitithan the other four
methods in providing better depth for the significéest of equal population mean vectors when tita & free from
outlier. In the presence of outlier median and tnea mean seems to be better than the others. Tole fie measures

produced inconsistent result when the data are albrmiistributed.
KEYWORDS: Trimmed Mean, MCD Estimator, M-Estimator of Meanahhlanobis Depth, Kruskal-Wallis Test
INTRODUCTION

Measures that characterize a distribution, suameesures of location and scale, are said to bestabany little
change in a distribution have relative little effen their values. The population mear) &nd standard deviatiow) as
well as the sample meaif)(and sample standard deviatigifY are not robust. Robustness is particularly imgurtvhen
there is a possibility that our data set contaicentaminated” or “corrupt” data. If we take the mess an estimator for
instance, outlying points carry more “weight” thamints near the mean. Deleting the outlying pointild have a greater
impact on the location of the mean than deletimpiat in the dense region. A single point is enotmlreatly influence
the mean of a data set. In the contrary, 50% adta det must be moved to infinity in order to fotice median to do the
same. This suggests a robust estimator of locatigh breakdown point of the median is a reasorcfmosing it over the

mean as an estimator of location especially wherd#ta is contaminated.

The finite breakdown point of a statistic, whichastechnical device for judging an estimator is ¢heallest
proportion of observations that, when altered sigfitly, can render the statistic meaningless. Mmexisely the finite

sample breakdown point of an estimator refers ¢osthallest proportion of observations which wheerad can cause the
value of the statistic to be arbitrary large or Bnieghe breakdown point of the meanrl—lisi;n all dimensions, which is one of

the smallest among other estimators of locatiorarAfrom mean and median, we have other estimdttocation like
trimmed mean which is based on the predeterminesliatof trimming required in a data set. Also weéhainimum
covariance estimator of the mean and M-estimatdoadtion. M-estimator approach, unlike trimmed medetermines

empirically the amount of trimming that is requireida data set.

A quantity such as the population mean which charees a distribution is said to be a measurecdtion if it

satisfies the following four conditions, and aHifts sometimes added. To describe these conditien¥ be a random
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variable with distribution F, and 18(X) be some descriptive measure of F. TH€K) is said to be a measure of location

if for any constant a or b
1. 6(X+b)=0X)+>
2. 0(—X)=-0(X)
3. X=0implies6(X) =0 1
4, 0(aX) =ab(X)

5. LetFE.(x) = P(X < x) andF,(x) = P(Y < x) be the distribution corresponding to the randomiade X and Y.
Then X is said to be stochastically larger tharf %oi any x, F,(x) < F,(x) with strict inequality for some. If
all the quantiles of X are greater that the comesiing quantiles of Y, then X is stochasticallygar than Y.
Bickel and Lehmann argue (1975) that if X is statiually larger than Y, then it should be the cted 6(X) >

6(Y) if 8 is to be qualified as a measure of location. Tégupation mean has this property.

Each estimator of location works well under certeamdition of data. For example, if sampling isnfra light-
tailed distribution or even a normal distributianmight be desirable to trim very few observatiarsnone at all. If a
distribution is skewed to the right, a natural teacis to trim more observation from the right ses the left tail of the
empirical distribution. When the distribution isrn@al, mean as a location may not produce misleadiaglt. Then if the
distribution is skewed M-estimator of location nm@pduce a better result than the mean. In thismpapewish to test the
efficiency of different estimators of location iesting for the significance difference betweenrttean vectors of different
populations through Mahalanobis depth which prowittee ranks we used in Kruslal-Wallis non-pararodist statistic

for such analyses. We will as well, if possiblatstthe estimator that is better used for diffedzta distributions.
LOCATION ESTIMATORS

In this section we are going to study different ustbestimator of location and their properties. Aigdhe
measures of location we have mean, median, madenad mean, geometric mean, MCD location estimaeestimator
of location etc. Robust estimators include trimnmeglan, MCD location estimator, and M-estimator afalion. In this

section we decided to study the following estimsitor
The Sample Trimmed Mean

The standard error of the sample mean can bewelatiarger when sampling from a heavy-tailed disttion.
Sample mean estimator is a non-robust measurecafidm, u. A more robust estimator, the sample trimmed mteas

come as remedy to the problems of sample meansdimple trimmed mean, which estimatgds computed as follows.

Let x1,x,,...,X, be a random sample and let, x,), ..., Xy be the observations arranged in ascending order of

magnitude. The" largest valuex, is called the™ order statistics. Supposed the desired amounimfning has been
chosen to be/, 0 <y < 0.5. Let k = (yn), where(yn) is the value ofyn rounded down to the nearest integer. For
example, (10.9)=10. The sample trimmed mean is cbapby removing the k largest and k smallest ofadimms and

averaging the values that remains. In symbolss#meple trimmed mean is

_ X+t otXn-k

Xy = —2=% (@)

n-2k
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(Wilcox 2004)

The empirical distribution is trimmed in a mannemsistent with how the probability density functioras
trimmed when defining:. for the trimmed mean to have any practical impuréa a value foy must be chosen and this

depends on the number of contamination that isitte. For various reasons, a good choice for geaseasy = 0.2. If y

is too small, the standard error of the trimmed mnm , can be drastically inflated by outliers or saimglfrom

a heavy-tailed distribution. If is too large, the standard error can be relatilaige compared to the standard error of the
sample mean when sampling from a normal distriloutidn empirical investigation based on data frortualkstudies
suggests that the optimal amount of trimming, imte of minimizing the standard error, is usuallyween 0 and 0.25

(see, e.g., Hill and Dixon, 1982). In this we aoéng to consider 0.01 and 0.02 amount of trimming.
Minimum Covariance Determinant (MCD) Estimator

Hubert and Van Driessen (2004) used the re-weight€® estimator of multivariate location and scakchuse
of its good statistical properties and FAST MCDagithm which provides an efficient algorithm of cpuiing estimates
for large data set. For the X sample the MCD edtimis defined as the meah , and the covariance matrix Sof hy
observations out of,nobservations whose covariance matrix has the lodet®rminant. The quantity should be larger
than [(n-p+1) =2] and p-h, should be smaller than the number of outliershan X population. With this choice the MCD
attain its maximum breakdown value ,f{{p+1) =2] = 50%.The breakdown value of an estim#&atefined as the largest
percentage of contamination it can withstand. E enspects less than 25% contamination in the Xpleant is advised to
use i =0.75n as this yields higher finite sample efficiency.sBd on the initial estimatgs, , and §o, one computes for

each observation xts (preliminary) robust distance.

0_ _ “1(x —
RD —\/(X Uy 0)So(% = Uy o) i=1, 2,..., B3 ©

[.2
Then assign weight 1 tq b RD° < Apoors and weight O otherwise. The re-weighed MCD estima then
obtained as the mealy MCD and the covariance matrx, MCD of those observations with weight 1. This reighing
step increases the finite sample efficiency of M@D estimator considerably, whereas the breakdoanevremains the

same. This can be used to flag off outlier andasole used to detect outliers.

Through extensive simulation studies we observatl lfhobservations out of,robservations whose covariance
matrix has the lowest determinant were those obsiens with smaller Mahalanobis distance. The fingtg we did here
was to calculate the Mahalanobis distance of eath point. With the assistance of this distancewgee able to get
dataset whose estimators attain their maximum bi@ak value in a few numbers of iterations. For mdetails (see
Okonkwo, Okeke, and Nwabueze 2014).

M-Estimator for Location

The trimmed mean is based on a predetermined anafunimming. That is, you first specify the amouoft
trimming that is desired, after which the sampimmtned meang,,,, can be computed. Another approach is to determine
empirically the amount of trimming. For example,sémpling is from a light-tailed distribution, ove: a normal

distribution, or even a normal distribution, it rhigbe desirable to trim very few observations onenat all. If the

Impact Factor (JCC): 1.5429- This article can be danloaded fromwww.bestjournals.in



26 Okeke, Evelyn Nkiruka & Okeke, Joseph Uchenna

distribution is skewed to the right, a natural teacis to trim more observation from the righttbé empirical distribution.
In essence this is what M-estimator does. Whercheay for a measure of location, one strategy iss® some value, say,
¢, that is in some sense close, on average, theafpossible values of the variable X. One wayu#rdifying how close a

value c is from all possible of X is in terms of éxpected squared distance. In symbols,
E(X —¢)? (4)

Represents the expected squared distance front ¢s ihtended to characterize the typical subped¢hing under
study, a natural approach is to use the valuetocntidimizesE (X — ¢)2. TakingE (X — ¢)? as a function of ¢, the value of
¢ minimizing this function is obtained by differattng, setting the result equal to 0, and solMmgc. That is, ¢ is given

by the equation
EX—¢c)=0

sac = p. In other wordsy is the closest point to all possible values ofntérms of expected squared distance?
But u is not robust and (X — ¢)? gives an inordinate amount of weight to valueXahat are far from c. In other words,
the function(x — ¢)? increases rapidly as moves away from c. This approach described foivitgr a measure of
location can be improved by considering a clagsioétion for measuring the distance from a poird #ren searching for

a function within this class that has desirablepprties. To this end, let

§(X — pm) ()

Be some function that measures the distance frgrand letp be its derivatives with respect fg,. Attention is
restricted to those functions for whiE¢ (X — u,,,)), viewed as a function qf,,,, has a derivative. Taking the derivatives
of (5) to be

Elo(X —pum)] =0 (6)
where the function ¢ is assumed to be odd, meaning that ¢ (—x) = —¢@(x) for any x

An M-estimator of location is the valyg, such that
£ () = (X = f)? )

yielding fi,, = X , which is optimal under normality. The problentiwihis function is that it can cause practical
problem when sampling from non-normal distributiémiswhich extreme values can occur. But becauisectioice of¢ is
optimal under normality, a natural strategy is éarsh for some approximation of (7) that gives lyetire same results
when sampling from a normal distribution. In pastar, consider functions that are identical to §fQvidedX; is not too
extreme. For simplicity, consider a standard nordistribution, and take to beo, the standard deviation which in this
case is 1. Then the optimal choiceofX — f,,)%. Suppose instead thais taken to be

—2K(X — fi) if x < —K
EX =) =3 X —fin)?if —K<x<K (8)
2K(X — i), if x > K

Where K (some constant to be determined) is a ¢unonstant that determines the degree of robustiéss

when sampling from a normal distribution, the ogirmohoice for¢ is being used provided an observation is not extre

meaning that its value does not exceed K or idasst than —K. If it is extremé, becomes a linear function, rather than a
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guadratic function, and this linear function in@ea less rapidly than (7) , so extreme values avind) less of influence
on f,,. Now i, is the value minimizinﬁf(@). Taking the derivatives of this equation, wghgiven by (8), and

setting result equal to zerd,, is determined by
2Y X —pp) =0 9)
Where
¢(x) = max [—K, min(K, x)]

is Huber'sg. There remains how to get K. A common strategyoichoose the constant K so that when
estimatingf,,, the estimator has reasonably high efficiency weampling from a normal distribution, but continudes
have efficiency when sampling from a heavy-tail&dribution instead. A common choiceks= 1.28, the 0.9 quantile of
the standard normal distribution. Other choice migh more optimal, buK = 1.28 guards against relatively larger
standard errors while sacrificing very little whesmpling from a normal distribution. A more effi@ats choice might be
made based on knowledge about the distributiongbsampled.

The computation of M-estimator of locatigh, is done iteratively, but one step M-estimatorbtained using the

formula
2, = 1.28(MADN)(1'2'—1'1.)+Z?=_l.i+21 Xy (10)
n—iy;—ip
MAD MAD . . .
WhereMADN = ~ ——andMAD = MED{|X; — M|, ..., |X,, — M|} with M being the usual sample median.

Z75  0.6745

i, is the number of observati®pfor which (ﬁ) < —1.28 andi, the number of observations for Whiéﬁ%) > 1.28
Iterative Method of Finding M-Estimator of Location, fi,y,.

Setk = 0, i, = M, the sample median, and choose a value for K.rAncon choice i = 1.28

x(1—x»%if x| <1
0,if |x| =1

Step 1:Sefl =Y ¢ (;l;[’;;) and calculate it using(x) = {

Lif—-K<x<K

. _ o (Xi—Hk ; i ivati ichi =
Step2: SeB =Y ¢ (—MADN) and calculate it using the derivative@fwvhich isp(x) = { 0, otherwise

B is just the number of observatiokissatisfying-K < (%) <K.

Step 3: sefi,,q = [ + @ and solve.

Step 4: If| .1 — x| < 0.0001, stop and set,, = fix+1. Otherwise, increase k by one and repeat stelpotigh
4. (Wilcox 2004)

METHODOLOGY

The two main methods of analyses we considereisrstudy includes;
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Mahalanobis Depths

Mahalanobis depth (MD) is obtained from little astjment of Mahalanobis distance. Recall the mahaliano

distanced® =(y, —y)'S(y, —y), if m,is the vector that measures the location of X ipoatinuous and affine

equivariant way and’,the matrix that measures the scatter of the digidh such thatCy,,. = ACxA holds for any
matrix A of full rank and any c. Then based on éhparameters a simple depth fuction called the Mabais depth is

constructed as
-1
Mp(x) = (1 + [lx —myllZ,) (11)

M, (x) Takes its unique maximum at the cenfdy. Mahalanobis depth is continuous:om@nd in the distribution

of X. In particular, withm, = E(X) andC, = X, the moment Mahalanobis distance is given as

Mup(0) = [1+ (x = EGO)'Z . (x = E(X)] ™!
The sample version is
MD(xq, o, Xy F) =[1+ (x —%)'Sgt(x — %)) 72 (12)
Wherex is the mean vector arfif ! is the empirical covariance matrix
Kruskal —Wallis Test

Kruskal-Wallis (1952) test is a useful tool fortiag the equality of k independent populations. gige we have

k
k samples of sizes,, n,, ..., n, , with the total size of all sampld3= Z N . Suppose further that the data from all the
i=1

samples taken are ranked and that the sums oé#ithes ffor the k samples aRg, R,, ..., R, respectively. If we define the

Kruskal-Wallis H test as

12 Kk RZ
=———» —-3(n+])
n+D % n 13

then it can be shown that the sampling distributdil is very nearly a chi-square distribution witfl degrees

of freedom, provided that,, n,, ..., n, are all at least 5.

The H test provides a non-parametric method iratiedysis of variance for one-way classificationpoe-factor

experiments, and generalization can be made.
DISCUSSIONS

MD, just like Mahalanobis distance reveals a lotnddrmation about the distribution of datasethdis long been
in use in various statistical procedures due tanitgitive appeal and mathematical tractability gji¢e the restriction to
elliptical contours that it imposes) (see Serfl2@4). In this our paper we studied the effectifferent robust location
estimators on the Mahalanobis depth. The Mahalandbpth provided us with the ranks we used inrtgsthe null
hypothesis of equal population mean vectors bgpiglication to Kruskal-Wallis non-parametric tegtistic. MD in this

case allowed us to convert p-dimensional (where2) dataset to one-dimensional dataset where a uaigaest statistics
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can be applied. In this study four different simethdatasets that follow hypergeometric distributicere generated using
different specifications for analyses. For eactadat we ensured that there exists difference mithé groups in the set.
Out of the four datasets, one is highly affectedbtfiers. Also two real life data that follow noaihdistribution were also
studied to see how the method works when the datarimal, of course we know that Kruskal-wallig iesnot supposed
to be used when the data is normally distributelde Tirst normally distributed dataset is availabtehttp:www.real-
statistics.com/multivariate-statistics/hotellingseiu... and is on tropical disease characterizeebgrf low blood pressure
and body ache. A pharmaceutical company who is iwgrén a new drug to treat this type of diseasetedito determine
whether the drug is effective. They took a randamgle of 20 people treated with the new drug anavit® a placebo
and wanted to determine whether the drug is effedit reducing these three symptoms. The resuigudptel lings
test showed that the test in not significant. Tleeosd normally distributed dataset is obtained frbtethods of

Multivariate Analysis, second edition by Rencher0(2) or http://www.amazon.com/methods-multivariate-

Analysis...Rencher/dp/0470178966d the data contairzsstypes of coating for resistance to corrosion ompiEges of pipe.

Two pipes, one with each type of coating were hilirigether and left for the same length of timg&adifferent locations,
providing a natural pairing of the observations.ri@sion for each type of coating was measuredpen 2 variable
(maximum depth of pit in thousandths of an incld anmber of pits.) The Hotellings’ Fesult has it that the two coatings

differ in their effect on corrosion.

During the analysis the Mahalanobis depth of eaafas®t were computed with different robust estinsatd

location. The computed depths are then used as rardeuskal-Wallis test statistic and results webgained.
RESULTS

The result of the analyses in Table 1 showed thalpe of each location estimator at different ddistribution.
The performance of the estimators is assesseddiy Phvalue. Estimator with very low value indicatihat the test is

highly significant and thus there exist differeme¢he populations mean vectors.

Table 1: Performance of Six Different Estimators of Locationand their P-Values

Data Distribution

Location Hypergeometic | Hypergeometic | Hypergeometic | Hypergeometic Normal Normal
Estimator | Without Outlier | Without Outlier | Without Outlier with Qutlier
Mean 0.033 0.023 0.082 0.102 0.52( 0.501
Median 0.248 0.041 0.049 0.047 0.694 0.278
Trimmed
mean (0.1 0.419 0.028 0.049 0.070 0.520 0.4841
trimming)
Trimmed
mean (0.2 0.419 0.034 0.049 0.031 0.548 0.501
trimming)
MCD 0.326 0.028 0.041 1.000 0.330 0.397
M- 0.050 0.023 0.034 0.122 0.633 0.682
Estimator

CONCLUSIONS

Comparing the performance of the six differentraators of location we have that M-estimator is mefificient
than the other five methods in providing betterttefpr the significant test of equal population meeectors when the

data is free from outlier. In the presence of entfhedian and trimmed mean seems to be betteothans. The whole six
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estimators produced inconsistent result when the di@ normally distributed of course we know thiat method could

not work well with normally distributed data.
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